Infračervená kalibrace

Kalibrační zařízení určené pro pyrometry a termografické systémy, radiometry a systémy měřící tepelný tok a spektrografické měřicí systémy.

Všechna tělesa vyzařují do svého okolí energii, která je úměrná jejich absolutní teplotě. Ačkoli se záření emitované z tělesa skládá ze všech vlnových délek, nachází se oblast, v níž je množství záření významné pro měření teploty v průmyslu, od 0,3 µm do přibližně 20 µm. Viditelná oblast se pohybuje v rozmezí od 0,4 µm do 0,7 µm. Záření o vlnových délkách větších jak 0,7 µm se nachází v infračervené oblasti, kterou lidé nevidí.

Základní teoretické poznatky pro měření záření

Záření černého tělesa

Tepelná energie vyzařovaná objektem se vyjadřuje ve vztahu k energii vyzařované při téže teplotě dokonalým zářičem, který se tradičně nazývá černé těleso. Černé těleso pohlcuje veškeré záření, které přijme, a vyzařuje více tepelného záření ve všech intervalech vlnových délek než kterákoli jiná hmota v témže prostoru a při stejné teplotě.

Ačkoli je černé těleso ideální, neexistuje v naprosto dokonalé podobě. Speciálně zkonstruované laboratorní zdroje emitují záření s účinností 98 % nebo vyšší v porovnání s černým tělesem. Podařilo se již vytvořit laboratorní zdroje s účinností 99,98 % v porovnání s černým tělesem. Nejčastěji se černé těleso realizuje v podobě sférické (kulové) dutiny s malým otvorem na povrchu nebo trubky s uzavřeným koncem, jejíž délka je větší než její průměr. Neprůhledné stěny koule nebo trubice se udržují při rovnoměrné teplotě.

Jak ukazujeme na obrázku 1, tato zařízení zajišťují několikanásobné odrazy jakéhokoli záření, které vstupuje do otvoru. I přesto, že jsou stěny koule nebo trubice mírně odrazivé, dojde po mnoha odrazech k pohlcení veškeré energie, tj. při pokojové teplotě se zdá, že otvor v kouli nebo trubce je černý ve viditelné části spektra a také téměř dokonale absorbuje v ostatních oblastech spektra. Při dané teplotě otvor vyzařuje energii téměř totožnou rychlostí jako černé těleso o téže velikosti a teplotě.


Jak ukazujeme na obrázku 1, tato zařízení zajišťují několikanásobné odrazy jakéhokoli záření, které vstupuje do otvoru. I přesto, že jsou stěny koule nebo trubice mírně odrazivé, dojde po mnoha odrazech k pohlcení veškeré energie, tj. při pokojové teplotě se zdá, že otvor v kouli nebo trubce je černý ve viditelné části spektra a také téměř dokonale absorbuje v ostatních oblastech spektra. Při dané teplotě otvor vyzařuje energii téměř totožnou rychlostí jako černé těleso o téže velikosti a teplotě.


Na obrázku znázorňujeme komerčně dostupnou sekundární referenční pec s malým otvorem ve stejnoměrně zahřáté kulové dutině.

Dále můžeme černě těleso zkonstruovat jako hluboký klín, jehož dutina svírá pouze malý úhel. Několikanásobné odrazy ze stran klínu způsobí, že se nám těleso jeví jako černé. Skutečný význam klínu je konceptuální. Můžeme si představit, že povrch svou drsností připomíná množství malých klínů jako u opracovaného povrchu nebo odlitku. Jestliže je povrch velice drsný, klíny jsou hluboké a objekt bude oproti hladkému povrchu vykazovat takové vlastnosti záření, jež se podobají vlastnostem záření černého tělesa.

Stefan-Bolzmanův zákon

Rychlost, s jakou černé těleso vyzařuje energii, je dána Stefan-Bolzmanovým zákonem:

Tato rovnice předpokládá, že těleso přijímající záření je v absolutní nule. Přijímající těleso má teplotu T R a vyzařuje směrem k černému tělesu

rychlostí:
na jednotku plochy receptoru. Takže čistá energie na receptoru je:

kde K je konstanta, zohledňující plochy černého tělesa a receptor i vzdálenost mezi nimi.

Tyto rovnice udávají záření ze všech vlnových délek v celém spektru. Pro praktičtější využití, kde přijímající objekt (kupříkladu detektor v radiačním teploměru) výrazně reaguje pouze na krátkovlnnou část spektra, jsou užitečnější Wienův-Planckův a Wienův zákon.

Wienův-Planckův zákon

Wienův-Planckův zákon vyjadřuje záření emitované na jednotku plochy černého tělesa jako funkci vlnové délky l a teploty T.

Tato funkce je vykreslena pro několik hodnot teploty na obrázku 4.

C1, první radiační konstanta = 3,7418 x 10-16 wattů/m2

C2, druhá radiační konstanta = 1,43879 x 102 m · K

Wienův zákon

Pokud je C2/I T mnohem větší než 1, pak lze Wienův-Planckův zákon přiblížit pomocí Wienova zákona.

Tento výraz souhlasí s Wienovým-Planckovým zákonem do 1 %, pokud I T je menší jak 0,003 metru · K (3000m m.K).

Při vlnové délce 0,65 m dochází k tomuto stavu u teplot pod 4600 K. Proto se Wienův zákon obvykle používá s vysokou přesností v oblasti optické pyrometrie.
Wienův posunovací zákon (Wienův zákon posunu)

Na obrázku 4. Je zřejmé, že s nárůstem teploty se nezvyšuje pouze množství záření na jednotku plochy, nýbrž se i vlnová délka, při které je záření maximální, posune ke kratším vlnovým délkám.

Hodnota vlnové délky maximálního záření na jednotku plochy je dána Wienovým posunovacím zákonem.

 


Obr. 4 Intenzita záření jako funkce vlnové délky a teploty (Planckův vyzařovací zákon)

Další informace o Wienově posunovacím zákonu

Kalibrační geometrie

Veškeré infračervené pyrometry, především pak ty, které měří při dlouhých vlnových délkách, vykazují „vliv velikosti měřené plochy“ (z angl. size of source effect – SSE), což znamená, že část jejich citlivosti leží mimo daný průměr bodu (paprsku). To je způsobeno nežádoucími, avšak nevyhnutelnými účinky, například difrakcí nebo několikanásobnými odrazy uvnitř čočky a mezi čočkou a detektorem.

Pokud zdroj zkalibrujete pomocí přesného průměru bodu (paprsku), dojdete při měření velkých ploch k obrovským hodnotám. Ovšem kalibrace na zdroj s velmi velkou plochou by způsobila, že by naměřené hodnoty byly velice nízké v těch případech, kdy byste měřili objekt o průměru paprsku.

Oficiální kalibrační pravidla VDI/VDE 3511 část 4.4 definují „kalibrační průměr“ jako praktický kompromis mezi těmito dvěma extrémními polohami.

Všechny pyrometry LumaSense jsou kalibrovány podle těchto pravidel.

Tato stránka je chráněna autorským právem a její komerční využití a další zveřejňování je zakázáno. Kopie lze vyhotovovat pro akademické nebo výzkumné účely a distribuovat jen za podmínky uvedení původních informací o autorských právech. Na tuto stránku nebo jiné stránky  můžete přímo odkazovat v LumaSense Technologies.